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Plastic deformation by crazing in polycarbonate 
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On the basis of the data of craze behaviour under static tension, the deformation curves 
followed bycontinuous initiation and growth of crazes are plotted for a variety of testing 
conditions, such as constant stress, constant strain-rate and constant strain tensions 
applying the Johnston-Gilman theory for dislocations. Experimentally determined 
values of the density and growth rate of crazes, which are regulated in accordance 
with a simple rate theory, are used for the calculations. Comparison of the theory with 
the experimental results is favourable except for the results of high strain-rate tension and 
stress relaxation. The application of the dislocation analogue approach to the craze 
deformation kinetics was found to be valuable. 

1. Introduction 
High polymer solids may craze and crack when 
subjected to stresses in some environments. The 
yield point followed by continuous initiation and 
growth of crazes is much lower than the shear 
yield point without crazing. The strain caused by 
crazing, (craze strain) increases with increasing 
craze density which (i.e. the the number of crazes 
per unit volume or surface area). Thus, the 
initiation and growth of crazes play an important 
role in the deformation kinetics of polymer solids 
in a different way to shear yielding. Therefore, 
theoretical analysis of the deformation behaviour 
due to crazing is of considerable interest. 

Hoare and Hull [1], and Brown [2] have 
suggested, on the basis of a dislocation analogue, 
that the strain increase caused by crazing is 
expressed as function of the density, growth rate 
and thickness of craze. Subsequently, applying the 
Johnston-Gilman theory [3] of dynamic yielding 
of crystalline solids, Brown [4] has calculated the 
stress-strain curves followed by crazing, and has 
shown that the calculated curves agree with the 
experimental ones qualitatively, but not quanti- 
tatively. This quantitative disagreement may arise 
partly from the fact that  the experimental values 
used for the calculation are not necessarily valid 

for craze density on a physical basis. He assumed 
that the craze density was independent of testing 
time. As demonstrated by Argon and Hannoosh 
[5], however, the craze density for a given applied 
stress increases with time and gradually approaches 
a saturation density. Therefore, a partial improve- 
ment of the calculation is needed. 

It is the purpose of this paper to estimate theor- 
etically from the data of craze behaviour under 
static tension the stress-strain relations followed 
by crazing for a variety of testing conditions 
such as creep, constant strain-rate tension and 
stress relaxation. Such an estimation will require 
the investigation of craze density and growth rate 
under static tension. A theoretical model of 
craze behaviour under static tension has been 
proposed by Argon and Hannoosh [5], and Argon 
and Salama [6]. However, their functional forms 
presented are complex, and not suitable for the 
calculations to be discussed here. Hence, craze 
behaviour, measured under static tension, is 
regulated in accordance with a simple rate 
theory, and the data will be used to calculate 
deformation kinetics. The theoretical deformation 
curves obtained are compared with the experi- 
mental results obtained from a polycarbonate 
plate under the action of a crazing agent, kerosene. 
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2. Exper imenta l  procedure 
The material used was commercially available 
polycarbonate (PC) plate 1 mm thick (Takiron 
plate, Takiron Co, Japan). Dumb-bell shaped 
specimens (gauge part 10mm x 20mm) were cut 
from it, and then annealed for 1 h at 120~ and 
cooled in an oven to remove residual strain. 

In order to observe the craze behaviour 
necessary for the theoretical calculation, static 
tensile tests were performed with a constant-load 
type testing machine constructed for this experi- 
ment. Five applied stresses between 3.5 and 
4.5 kg mm -2 were chosen, and five specimens were 
tested at each stress level. The dependence of the 
density and length of craze on time was deter- 
mined from photographs taken through a low- 
power optical microscope at reasonable intervals 
without stopping the test. To prevent the 
nucleation of crazes from the side edges of the 
specimen surfaces, the edges were thinly covered 
by glue. 

Constant stress or creep tests were also per- 
formed using the above method, creep elongation 
being measured by a clip gauge fastened between 
the testing jigs. For constant strain-rate tension 
and stress relaxation tests, an Instron-type tensile 
testing machine was used. Load--elongation curves 
during the tests were traced on an X - Y  recorder. 

All the tests were carried out at room temper- 
ature (20-+ 1 ~ C) under the action of a crazing 
agent, kerosene. 

3. Exper imenta l  results 
3 .1 .  D e n s i t y  a n d  g r o w t h  ra te  o f  c r a z e  u n d e r  

static tension 
Experimentally measured densities of craze as a 
function of time are shown in Fig. 1, where the 
solid surves are drawn on the basis of a theoretical 
model to be discussed later. Since the measured 
data were considerably dispersed for every 
specimen tested, the mean values were plotted in 
the figure. Examination of these data shows that 
for a given applied stress, the craze density initially 
increases with time but then gradually approaches 
a saturation density, and the saturation density 
increases with increasing applied stress. This trend 
is very similar to that observed by Argon and 
Hannoosh [5]. On the other hand, Narisawa and 
Kondo [7] have indicated, using the Statistical 
observation on the dispersions of craze nucleation 
time, that its distribution function is a mono- 
tonically decreasing fucntion of time. This means 
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Figure I Comparison of theoretical ( ) and 
experimental variations of craze densities with time at 
different applied stresses. 
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Figure 2 Histogram of craze growth rate at an applied 
stress of 4.5 kg mm -2 . 

that the frequencies of nucleation of new crazes 
decrease with time, and therefore is consistent 
with the present results. 

A large number of measurements were made of 
craze length as a function of time at different 
stress levels. The length of craze varied linearly 
with time during the period of the test. The slopes 
of the growth curves for individual crazes, i.e. the 
rates of craze growth, showed large variations even 
on the same specimen. This is evident in Fig. 2, 
which shows an example of a frequency histogram 
of the growth rates of several hundred crazes 
which appeared on five specimens tested at an 
applied stress of 4.5 kg mm -2 . This dispersion, 
which probably arises partly from a slight bending 
of the specimen and partly from the essential 
statistical behaviour of crazes, may be important 
in understanding the statistical distribution of 
craze length at a given time. This statistical aspect 
will be reported elsewhere in detail [8]. As this 
paper is concerned with the average deformation 
behaviour, the mean growth rates are obtained 
from such figures as a function of applied stress. 
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Figure 3 Effect of applied stress on mean growth rate 
under static tension. The solid line drawn empirically is 
used for the theoretical calculations. 

The results are shown in Fig. 3, where the solid 
line drawn empirically is used for the calculations 
discussed later. 

3 .2 .  D e f o r m a t i o n  c u r v e s  
Experimental creep strain curves are shown as a 
function o f  time by the dotted lines in Fig. 4, 
where the solid curves are theoretical. Although 
the experimental curves for a given applied stress 
are fairly dispersed, the tendencies are very similar. 
The creep strain gradually increases with time 
during the initial stage and accelerates to a fracture 
strain at the final stage. The creep strain (total 
strain minus initial elastic strain) tested without 
a crazing agent was very small compared with that 
tested under kerosene. The increase in creep strain 
under kerosene may, therefore, be regarded as 
consisting of  only craze strain. The creep fracture 
surfaces consisted o f  three typical regions, i.e. 
delayed fracture from craze crack, fast fracture 
with a smooth surface, and fast fracture with 
rough or so-called mackerel marks. The delayed 
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Figure 4 Comparison between theoretical ( 
experimental ( -  - - )  creep strains. 
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crack growth from the crazed matter was found to 
be a precursor o f  final fracture. Thus, in order 
to establish a craze fracture criterion, a precise 
description of  the craze creep strain will be 
required. 

Experimental stress-strain curves tested at 
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Figure 5 Comparison between theoretical ( -) and 
experimental ( - - - )  stress-strain curves at different 
strain-rates in simple tension. 
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three different strain rates in simple tension are 
shown by the dotted lines in Fig. 5. It could be 
observed by the naked eye that numerous crazes 
formed in the neighbourhood of the yield point, 
and shear bands peculiar to shield yielding did not 
appear. Furthermore, the dependence of the yield 
point on strain-rate was found to be considerably 
higher than that of  the shear yield point (see Fig. 7). 
These observations may provide an important 
piece of evidence that the yielding is attributed to 
crazing, as pointed out by Brown. The yielding is 
called craze or normal yielding. 

At lower stress levels during the test, few crazes 
were observed o n  the specimen surfaces. The 
elastic modulus, therefore, is not so affected by 
crazing and nearly equal to that tested in air, 
until the applied stress reaches a certain stress 
level. In excess of that stress, the craze density 
suddenly began to increase with increasing applied 
stress and the modulus gradually become lower 
than that in air. At relatively high strain rates, 
numerous short crazes were observed near the 
yield point, as such crazes have only a short time- 
interval in which to grow because of the high test 
speed, and because they interact due to the high 
craze density. The reverse is true for relatively low 
strain rates. After craze yielding, the stress 
decreases with increasing strain, and fracture 
occurs. Fracture strain or stress depends on strain- 
rate, probably because fracture has a close 
connection with the density and length of craze at 
the stage where fracture occurs. 

Experimental stress relaxation curves are shown 
by the dotted lines in Fig. 6, where the solid curve 
is theoretical. At the beginning of the test, the 
specimens was subjected to a strain corresponding 
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Figure 6 Compar ison be tween  theoretical  ( ) and 
exper imenta l  ( -  - - )  stress relaxat ion curves. 

to an applied stress of 4 .5kgmm -2 in simple 
tension, and were then wet with kerosene as soon 
as possible. Crazes nucleated immediately on the 
specimen surfaces, and the relaxation of the initial 
applied stress occurs. The amount of stress 
relaxation in air was found to be smaller than that 
under kerosene. 

4. Discussion 
4.1. Craze behaviour under static tension 
The purpose of this section is to derive, on the 
basis of a rate theory, functional forms of 
craze density and growth rate for an applied 
stress and time, which will then be used for 
calculating the theoretical deformation curves. The 
application of rate theory in a general form to the 
craze nucleation and growth processes does not 
require a specific molecular mechanism. 

Let AG be the height of  the free energy barrier 
required for craze nucleation. When a stress is 
applied, the barrier is biased in favour of  craze 
nucleation by an amount E(o), strain energy input 
by a normal stress. The form of E(a) is usually 
written as E ( a ) = a a ,  a being the activation 
volume. Thus the height of the barrier changes 
from AG to AG -- aa. In equilibrium, according to 
Boltzmann statistics, the fraction of craze particles 
per unit volume, Po with respect to the total 
number of  craze nucleation sites per unit volume, 
p*, is 

Po/P* = exp kT ]' (1) 

where k is Boltzmann's constant and T is the 
absolute temperature. Po corresponds to a craze 
saturation density. Let p be the number of crazes 
per unit volume at a certain time t. The net rate of 
increase in p may be proportional to the product 
of  the rate constant, m, and the number of  sites 
capable of craze nucleation, P 0 - - P ,  and there- 
fore can be described by 

dp 
- -  = m (Po - -P) ,  (2) 
dt 

where dp/dt is the craze nucleation rate. 
According to the absolute reaction rate theory, the 
rate constant m can be expressed as 

m = Ak-T-Texp - (3) 
h k'T ' 

where h is Planck's constant and A a factor of the 
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order of  1.0. Solving Equation 2 with the 
boundary condition p = Po at t = oo results in 
Equation 4 for the prediction of the time and 
stress-dependence of craze density. 

P = Po [ 1 - e x p ( - m t ) ] .  (4) 

Equation 4 implies that the craze density initially 
increases with time and gradually approaches a 
saturation density dependent on the applied stress, 
and therefore qualitatively agrees with the experi- 
mental data. The solid curves in Fig. 1 show 
Equation 4 with the constants given in Equation 5. 
Here, the number of crazes per unit surface area is 
adopted in place of the number of per unit 
volume. 

P0 = 3.6 x 10 -4 exp (2.350) 
(s) 

m = 4.0 x 10 -7 exp (2.35a) 

The units of Po, m and o used in Equation 5 are 
cm -2 , sec -1 and kgmm -~ , respectively, The cal- 
culated curves for all applied stresses agree well 
with the experimental results. If  A is set equal to 
1.0 in Equation 3, the constants AG and a are 
determined from Equation 5 to be 26 kcal mo1-1 
and 1.0 x 10 -21 cm a , respectively. These values 
are considered to be reasonable in comparison 
with those obtained by Narisawa and Kondo [7]. 

A craze growth rate function with respect to 
the applied stress is determined from Fig. 3. A 
plot of log mean growth rate, v versus applied 
stress, o,  is linear. Hence, the growth rate can be 
described by 

v = Vo exp ( B a ) ,  (6) 

where Vo and B are constants. However, the 
deviation from the line drawn for the low stress 
range is observed at a high stress level. Strong 
interaction between crazes, which probably arise 
from the high craze density, may cause this 
deviation, as mentioned by Argon and Salarna [6]. 
For the calculation shown in Section 4.2, the 
following values were, therefore, used; Vo = 4.03 x 
10-aVmmsec -1 and B = 7 . 9 5 m m 2 k g  -I for the 
stress range lower than 4 .0kgmm -2 . and Vo--- 
3.84 • 10 .6 m m  s e c  -1 and B = 1.63 mm 2 kg -1 
for the stress range higher than 4.0 kg mm-2. 

4.2. Theoret ical  calculat ion o f  deformat ion 
cu rves 

The theory assumes that only elastic strain, eE, 
and craze strain, ee, occur in the specimen. Since 

the stiffness of  a testing machine is considered to 
be very high, the total strain, e, is given by 

e = e E + e c .  (7) 

The elastic strain is given by 

eE = a/M,  (s) 

where o is the applied stress and M is the elastic 
modulus of the material. According to the 
dislocation analogue, the strain caused by crazing 
has the following form [2]. 

e c = p b a / z  (9) 

where z is the specimen thickness, b is the opening 
displacement of the craze, p is the number of  
crazes per unit surface area and a is the craze area 
perpendicular to the tensile direction. If the 
change in p with t is very small, the craze strain- 
rate, #e, is written as 

ec = p b a / z ,  (10) 

where h is the extension rate of  the craze area. On 
the basis of Equation 10, Brown [4] has calcu- 
lated the stress-strain curves of polychloro- 
trifluoroethylene in simple tension. In this paper, 
however, we start with Equation 9 when 
estimating the plastic craze strain. 

The pioneering experiments of Bessonov and 
Kuvshinsky [9] have revealed that the craze 
thickness increases with craze length. Thus, the 
craze thickness, b, is a function of the length of 
craze. Furthermore, crazes may grow also towards 
the direction perpendicular to the specimen 
surface. However, exact data expressing such craze 
behaviour have not been published. Therefore, the 
following assumptions are used; 

(1 ~ f l  2 

(11) 
b = g l  

where l is the craze length measured on the 
specimen surface, and f and g are the shape 
factors. The experiments of Bessonov and 
Kuvshinsky show that the shape factor g is about 
2.5 x 10 -3 . If  the craze plane is semi-elliptical, and 
f is 0.16, the craze length along the short axis of 
the ellipse is about 0.1 x l. This is comparable 
with the experimental result of Williams and 
Marshall [10]. 

Equation 9 may now be written as 

e e = K p l 3 / z ,  (12) 
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where K is again the shape factor, i.e. fg. Although 
the factor K may be dependent on applied stress, 
here it is assumed to be constant over the entire 
stress range. For the calculations discussed 
below, K = f g  = 2.5 x 10 -3 x 0.16 = 4.0 x 10 -4 
was used. 

First, we consider creep deformation. The 
number of crazes Ap, which nucleate during an 
infinitesimal time interval from r to 7- + Ar is 
obtained from Equation 4 to be 

Ap = moo exp (--mr)AT-. (13) 

At a certain time t (t > r), these crazes cause a 
strain increase expressed by 

Aec = Kz-1 moo exp (-- mr) [v(t -- 7-) + lo ] 3 AT-, 

(14) 

where v is the average craze growth rate for a given 
stress and lo is the initial craze length. Summing 
these strain increases leads to the total craze strain 
given by 

ee = ftoKz-ampo exp (--mT-)[v(t--7-) + lo] 3d7-. 

(15) 

Elementary integration leads to 

ee = Kz-1 P0 m-3 [x 3 (yS _ e-nat) 

-- 3vx2 (y 2 -- e-rot) + 6V2x(y -- e-nat) 

-- 6zP (1-- e-nat) ] , (16) 

where x = mlo andy = (v/lo)t + 1. The numerically 
calculated results of  Equation 15 with the 
constants given in Equations 5 and 6, shown by 
the dotted curves, agree fairly well with the experi- 
mental data. 

It is interesting to note that the computed 
values of Equation 15 can be numerically 
approximated by 

ee = D exp (/3a)t n , (17) 

where D,/3 and n are the constants. The value of n 
is equal to 3.4 for the entire stress ranges, but the 
value of/3 is different at each applied stress level, 
i.e. 13 = 8.35 at the high stress range and 13 = 27.0 
at the low stress range. This difference in /3 is 
attributed to the use of  two different experimental 
expressions of  v. Equation 17 is identical to the 
commonly used creep equation similar to the so- 
called Nutting equation. 

Next, we consider the stress-strain curves 
under constant strain-rate tension. The important 
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difference from the case of  creep is that here the 
applied stress is a function of time. The density 
of crazes which nucleate during an infinitesimal 
time interval, Ar is obtained by putting 7- = 0 in 
Equation 4 equal to Po mAr.  Crazes which nucleate 
atT- grow to frtv(a)drl at a certain time, r~ being the 
time. Then the craze strain at t can be described 
by 

f :  [~r ] 367-. ee = Kz -1 po(a)m(a) o(o)dr/+ lo 

J (18) 

The equation governing the stress-strain relation 
is obtained by combining Equations 7 and 18 to 
give 

fo dt = o/M + Kz -1 po(a)m(o) 

I f  ~ v(a)dr~+lo]3dr, (19) 

where ~ is the strain-rate and M is the tangent 
modulus for the elastic region which exhibits non- 
linear behaviour in high polymer solids. Equation 
19 is a Voltera-type integral equation with respect 
to o. Since the strain-rate dependence of M is very 
small, the next relation of M to a is used for all the 
strain-rate ranges tested; 

M = - 4.826o + 85.24 (kg mm -2). (20) 

Calculations of  Equation 19 was carried out using 
the experimental constants given in Sections 4.1 
and 4.2, the modulus M being obtained from the 
stress-strain curves tested in air, as mentioned 
above. 

The solid curves in Fig. 5 show the calculated 
values obtained at different strain-rates. Com- 
parison between the theoretical and experimental 
curves indicates that there is quantitative difference 
at a high strain rate of 0.2 min-1. At a high strain- 
rate, the craze growth rate in the high stress range, 
which we were unable to measure in static tension 
because of the low yield point, is expected to be 
much lower than the values given by Equation 6, 
since the high density of crazes causes interaction 
between individual crazes. However, since this 
effect is not taken into account in the theory, the 
computed yield point will be lower than the 
experimental one. Examination of the specimen 
surfaces tested at high strain-rates (2.0 min -1) have 
shown that the yielding is caused by both crazing 
and shearing, and the craze yield point is not so 
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Figure 7 Effect of strain-rate on craze and shear yield 
points. 

different from the shear yield point as indicated 
in Fig. 7. Therefore, the present theory may not 
be applied to high strain-rate yielding. Equation 6 
may also be applied to the growth rate during 
yield drop, but the interactions between the 
crazes and the decreasing stress will make the 
growth rate smaller than the values expected from 
Equation 6. Thus, the calculated extent of the 
yield drop is considered to be greater than that in 
the experiment. Therefore, an exact description of 
the craze growth rate is required to understand the 
yield drop behaviour. Except for the results of  
high strain-rate tension, the theory agrees well 
with the experimental data. 

Fig. 7 shows the theoretical and experimental 
strain-rate dependence of the craze yield point. It 
is found that the craze yield point is more sensitive 
to strain-rate than the shear yield point. This is 
characteristic of craze yielding. Although the 
theory coincides with the experimental data in low 
strain-rate range, it departs considerably from the 
experimental results in the high strain-rate range. 
This departure may suggest a limitation of the 
application of the present theory to high strain- 
rate yielding. 

Fig. 8 shows the theoretical dependence of 
craze density on strain at a strain-rate of  
0.011 min -1 . The open circles are in good agree- 
ment with the theory. Both the theory and the 
experiment show that the craze density increases 
abruptly with increasing strain until yielding 
occurs. According to the theory, the density in 
simple tension can be approximated as a function 
of applied stress in a stress range lower than the 
yield point by 
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Figure 8 Comparison of theoretical ( -) and 
experimental (o) variations of craze density with time at 
a strain-rate of 0.011 min -1 in simple tension. The stress- 
strain curve is theoretical. 

o = c exp (~ o) (21) 

where ~ is a constant and C the strain-rate 
dependent parameter. Equation 21 is inconsistent 
with Brown's experimental expression given by a 
linear function of o. 

Finally, the theoretical stress relaxation curves 
are estimated from Equation 7 and 18, and com- 
pared with the experimental results. Again it 
should be noted that the stress is time-dependent. 
Since the total strain is held constant during the 
test, the left-hand side of Equation 7 is constant. 
The computations were performed in the same 
way as those for the stress-strain curves 
mentioned above. For the calculations, however, 
the relaxation modulus in air was used in place of  
the tangent modulus. The result is shown in Fig. 6. 
Comparison of the theoretical curve with the 
experimental ones shows that there are considerable 
departures from what could be considered to be a 
good fit. These departures probably result from 
under-estimation of the craze growth rate at a 
decreasing stress stage. The experiment, performed 
by removing the applied stress in a step-like 
manner, revealed that the craze growth rate is 
greatly affected by the stress history. Therefore, 
the exact calculation for the stress relaxation curve 
may require investigation of craze behaviour under 
such conditions. 

5 .  C o n c l u s i o n s  
A theory expressing craze plastic deformations is 
presented on the basis of  a dislocation analogue 
method extended by Brown, and compared with 
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the experiments under the conditions of creep, 

simple tension and stress relaxation. Fairly good 

agreement between theory and experimental 
results shows that the dislocation analogue 

approach is valuable for describing the craze plastic 

deformation. However, further investigation will be 
required for an exact description of craze yielding 

and stress relaxation. 
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